Microbial Communication, Cooperation and Cheating: Quorum Sensing Drives the Evolution of Cooperation in Bacteria
نویسندگان
چکیده
An increasing body of empirical evidence suggests that cooperation among clone-mates is common in bacteria. Bacterial cooperation may take the form of the excretion of "public goods": exoproducts such as virulence factors, exoenzymes or components of the matrix in biofilms, to yield significant benefit for individuals joining in the common effort of producing them. Supposedly in order to spare unnecessary costs when the population is too sparse to supply the sufficient exoproduct level, many bacteria have evolved a simple chemical communication system called quorum sensing (QS), to "measure" the population density of clone-mates in their close neighborhood. Cooperation genes are expressed only above a threshold rate of QS signal molecule re-capture, i.e., above the local quorum of cooperators. The cooperative population is exposed to exploitation by cheaters, i.e., mutants who contribute less or nil to the effort but fully enjoy the benefits of cooperation. The communication system is also vulnerable to a different type of cheaters ("Liars") who may produce the QS signal but not the exoproduct, thus ruining the reliability of the signal. Since there is no reason to assume that such cheaters cannot evolve and invade the populations of honestly signaling cooperators, the empirical fact of the existence of both bacterial cooperation and the associated QS communication system seems puzzling. Using a stochastic cellular automaton approach and allowing mutations in an initially non-cooperating, non-communicating strain we show that both cooperation and the associated communication system can evolve, spread and remain persistent. The QS genes help cooperative behavior to invade the population, and vice versa; cooperation and communication might have evolved synergistically in bacteria. Moreover, in good agreement with the empirical data recently available, this synergism opens up a remarkably rich repertoire of social interactions in which cheating and exploitation are commonplace.
منابع مشابه
Multicellular behavior in bacteria: communication, cooperation, competition and cheating.
The sociobiology of bacteria, largely unappreciated and ignored by the microbiology research community two decades ago is now a major research area, catalyzed to a significant degree by studies of communication and cooperative behavior among the myxobacteria and in quorum sensing (QS) and biofilm formation by pseudomonads and other microbes. Recently, the topic of multicellular cooperative beha...
متن کاملSocial conflict drives the evolutionary divergence of quorum sensing.
In microbial "quorum sensing" (QS) communication systems, microbes produce and respond to a signaling molecule, enabling a cooperative response at high cell densities. Many species of bacteria show fast, intraspecific, evolutionary divergence of their QS pathway specificity--signaling molecules activate cognate receptors in the same strain but fail to activate, and sometimes inhibit, those of o...
متن کاملSocial Evolution Selects for Redundancy in Bacterial Quorum Sensing
Quorum sensing is a process of chemical communication that bacteria use to monitor cell density and coordinate cooperative behaviors. Quorum sensing relies on extracellular signal molecules and cognate receptor pairs. While a single quorum-sensing system is sufficient to probe cell density, bacteria frequently use multiple quorum-sensing systems to regulate the same cooperative behaviors. The p...
متن کاملFacultative cheating supports the coexistence of diverse quorum-sensing alleles.
Bacterial quorum sensing enables bacteria to cooperate in a density-dependent manner via the group-wide secretion and detection of specific autoinducer molecules. Many bacterial species show high intraspecific diversity of autoinducer-receptor alleles, called pherotypes. The autoinducer produced by one pherotype activates its coencoded receptor, but not the receptor of another pherotype. It is ...
متن کاملSelection favors incompatible signaling in bacteria.
A cooperative group can achieve more than the sum of its members. Evolution has taken advantage of this principle in most natural systems, from multicellular individuals to ant colonies. To do so, it has provided the members of cooperative groups with communication tools, which are critical for effective cooperation. For example, some ants form bridges with their bodies to help their nest-mates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009